VVS: Video-to-Video Retrieval with Irrelevant Frame Suppression

Won Jo, Geuntaek Lim, Gwangjin Lee, Hyunwoo Kim, Byungsoo Ko, Yukyung Choi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

In content-based video retrieval (CBVR), dealing with large-scale collections, efficiency is as important as accuracy; thus, several video-level feature-based studies have actively been conducted. Nevertheless, owing to the severe difficulty of embedding a lengthy and untrimmed video into a single feature, these studies have been insufficient for accurate retrieval compared to frame-level feature-based studies. In this paper, we show that appropriate suppression of irrelevant frames can provide insight into the current obstacles of the video-level approaches. Furthermore, we propose a Video-to-Video Suppression network (VVS) as a solution. VVS is an end-to-end framework that consists of an easy distractor elimination stage to identify which frames to remove and a suppression weight generation stage to determine the extent to suppress the remaining frames. This structure is intended to effectively describe an untrimmed video with varying content and meaningless information. Its efficacy is proved via extensive experiments, and we show that our approach is not only state-of-the-art in video-level approaches but also has a fast inference time despite possessing retrieval capabilities close to those of frame-level approaches. Code is available at https://github.com/sejong-rcv/VVS.

Original languageEnglish
Title of host publicationTechnical Tracks 14
EditorsMichael Wooldridge, Jennifer Dy, Sriraam Natarajan
PublisherAssociation for the Advancement of Artificial Intelligence
Pages2679-2687
Number of pages9
Edition3
ISBN (Electronic)1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879
DOIs
StatePublished - 25 Mar 2024
Event38th AAAI Conference on Artificial Intelligence, AAAI 2024 - Vancouver, Canada
Duration: 20 Feb 202427 Feb 2024

Publication series

NameProceedings of the AAAI Conference on Artificial Intelligence
Number3
Volume38
ISSN (Print)2159-5399
ISSN (Electronic)2374-3468

Conference

Conference38th AAAI Conference on Artificial Intelligence, AAAI 2024
Country/TerritoryCanada
CityVancouver
Period20/02/2427/02/24

Bibliographical note

Publisher Copyright:
Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

Fingerprint

Dive into the research topics of 'VVS: Video-to-Video Retrieval with Irrelevant Frame Suppression'. Together they form a unique fingerprint.

Cite this