Jet kinematics of the quasar 4C+21.35 from observations with the KaVA very long baseline interferometry array

Taeseok Lee, Sascha Trippe, Motoki Kino, Bong Won Sohn, Jongho Park, Junghwan Oh, Kazuhiro Hada, Kotaro Niinuma, Hyunwook Ro, Taehyun Jung, Guang Yao Zhao, Sang Sung Lee, Juan Carlos Algaba, Kazunori Akiyama, Kiyoaki Wajima, Satoko Sawada-Satoh, Fumie Tazaki, Ilje Cho, Jeffrey Hodgson, Jeong Ae LeeYoshiaki Hagiwara, Mareki Honma, Shoko Koyama, Tao An, Yuzhu Cui, Hyemin Yoo, Noriyuki Kawaguchi, Duk Gyoo Roh, Se Jin Oh, Jae Hwan Yeom, Dong Kyu Jung, Chungsik Oh, Hyo Ryoung Kim, Ju Yeon Hwang, Do Young Byun, Se Hyung Cho, Hyun Goo Kim, Hideyuki Kobayashi, Katsunori M. Shibata, Zhiqiang Shen, Wu Jiang, Jee Won Lee

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

We present the jet kinematics of the flat spectrum radio quasar (FSRQ) 4C+21.35 using time-resolved KaVA very long baseline interferometry array radio maps obtained from 2014 September to 2016 July. During two out of three observing campaigns, observations were performed bi-weekly at 22 and 43 GHz quasi-simultaneously. At 22 GHz, we identified three jet components near the core with apparent speeds up to (14.4 ± 2.1)c. The timing of the ejection of a new component detected in 2016 is consistent with a γ -ray flare in 2014 November. At 43 GHz, we found four inner jet (<3 mas) components with speeds from (3.5 ± 1.4)c to (6.8 ± 1.5)c. Jet component speeds tend to be higher with increasing distances from the core. We compared our data with archival Very Long Baseline Array (VLBA) data from the Boston University (BU) 43 GHz and the Monitoring Of Jets in Active galactic nuclei with VLBA Experiments (MOJAVE) 15.4 GHz monitoring programmes. Whereas MOJAVE data and our data are in good agreement, jet speeds obtained from the BU programme data in the same time period are about twice as high as the ones we obtain from the KaVA data. The discrepancy at 43 GHz indicates that radio arrays with different angular resolution identify and trace different jet features even when the data are obtained at the same frequency and at the same time. The flux densities of jet components decay exponentially, in agreement with a synchrotron cooling time-scale of∼1 yr. Using known electron Lorentz factor values (∼9000), we estimate the magnetic field strength to be ∼1-3 μT. When adopting a jet viewing angle of 5°, the intrinsic jet speed is of order 0.99c.

Original languageEnglish
Pages (from-to)2412-2421
Number of pages10
JournalMonthly Notices of the Royal Astronomical Society
Volume486
Issue number2
DOIs
StatePublished - 1 Jun 2019

Bibliographical note

Publisher Copyright:
© 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society.

Keywords

  • galaxies: active
  • galaxies: jets
  • methods: observational
  • quasars: individual: 4C+21.35.

Fingerprint

Dive into the research topics of 'Jet kinematics of the quasar 4C+21.35 from observations with the KaVA very long baseline interferometry array'. Together they form a unique fingerprint.

Cite this