TY - JOUR
T1 - Bayesian vs frequentist
T2 - Comparing Bayesian model selection with a frequentist approach using the iterative smoothing method
AU - Koo, Hanwool
AU - Keeley, Ryan E.
AU - Shafieloo, Arman
AU - L'Huillier, Benjamin
N1 - Publisher Copyright:
© 2022 IOP Publishing Ltd and Sissa Medialab.
PY - 2022/3/1
Y1 - 2022/3/1
N2 - We have developed a frequentist approach for model selection which determines the consistency between any cosmological model and the data using the distribution of likelihoods from the iterative smoothing method. Using this approach, we have shown how confidently we can conclude whether the data support any given model without comparison to a different one. In this current work, we compare our approach with the conventional Bayesian approach based on the estimation of the Bayesian evidence using nested sampling. We use simulated future Roman (formerly WFIRST)-like type Ia supernovae data in our analysis. We discuss the limits of the Bayesian approach for model selection and show how our proposed frequentist approach can perform better in the falsification of individual models. Namely, if the true model is among the candidates being tested in the Bayesian approach, that approach can select the correct model. If all of the options are false, then the Bayesian approach will select merely the least incorrect one. Our approach is designed for such a case and we can conclude that all of the models are false.
AB - We have developed a frequentist approach for model selection which determines the consistency between any cosmological model and the data using the distribution of likelihoods from the iterative smoothing method. Using this approach, we have shown how confidently we can conclude whether the data support any given model without comparison to a different one. In this current work, we compare our approach with the conventional Bayesian approach based on the estimation of the Bayesian evidence using nested sampling. We use simulated future Roman (formerly WFIRST)-like type Ia supernovae data in our analysis. We discuss the limits of the Bayesian approach for model selection and show how our proposed frequentist approach can perform better in the falsification of individual models. Namely, if the true model is among the candidates being tested in the Bayesian approach, that approach can select the correct model. If all of the options are false, then the Bayesian approach will select merely the least incorrect one. Our approach is designed for such a case and we can conclude that all of the models are false.
KW - Bayesian reasoning
KW - Frequentist statistics
KW - dark energy experiments
KW - supernova type Ia - standard candles
UR - http://www.scopus.com/inward/record.url?scp=85127544122&partnerID=8YFLogxK
U2 - 10.1088/1475-7516/2022/03/047
DO - 10.1088/1475-7516/2022/03/047
M3 - Article
AN - SCOPUS:85127544122
SN - 1475-7516
VL - 2022
JO - Journal of Cosmology and Astroparticle Physics
JF - Journal of Cosmology and Astroparticle Physics
IS - 3
M1 - 047
ER -