Abstract
Two dimensional (2D) semiconducting materials such as MoS2 have been actively investigated for their applications in nanodevices and gas sensors (or detectors). In this connection, we have investigated atomic and electronic structures of specific adsorbates on the surface of MoS2 and the edge of MoS2 armchair nanoribbons (ANRs) using density functional theory (DFT) calculations. Our calculations reveal that molecular adsorbates are well adsorbed at the edge of MoS2 than on the surface of MoS2. Despite the weak van der Waals (vdW) interaction between molecular adsorbates and MoS2 surface, paramagnetic molecules such as NO and NO2 induce the reduced band gap in MoS2 by making the states within the bandgap. On the other hand, adsorbed CO, NO, NO2, and O2 at the edge of MoS2 ANRs have much influence on the band structures of MoS2 ANRs via dissociation into their constituent atoms, while adsorbed CO2, NH3, H2, and N2 at the edge of MoS2 ANRs do not much change the band structure of MoS2 ANRs due to no dissociation. Further, we identify that dissociated molecules rearrange the charge densities of MoS2 ANRs by making the states within the bandgap.
Original language | English |
---|---|
Pages (from-to) | 1013-1019 |
Number of pages | 7 |
Journal | Current Applied Physics |
Volume | 18 |
Issue number | 9 |
DOIs | |
State | Published - Sep 2018 |
Bibliographical note
Publisher Copyright:© 2018 Korean Physical Society
Keywords
- Ab-initio study
- Adsorption
- Band gap
- Gas sensor
- MoS