Abstract
Understanding the formation of relativistic jets in active galactic nuclei remains an elusive problem 1 .This is partly because observational tests of jet formation models suffer from the limited angular resolution of ground-based very-long-baseline interferometry that has thus far been able to probe the structure of the jet acceleration and collimation region in only two sources 2,3 . Here, we report observations of 3C84 (NGC 1275)-the central galaxy of the Perseus cluster-made with an interferometric array including the orbiting radio telescope of the RadioAstron 4 mission. The data transversely resolve the edge-brightened jet in 3C84 only 30 μas from the core, which is ten times closer to the central engine than was possible in previous ground-based observations 5 and allows us to measure the jet collimation profile from ~102 to ~104 gravitational radii (r g) from the black hole. The previously found 5, almost cylindrical jet profile on scales larger than a few thousand r g is seen to continue at least down to a few hundred r g from the black hole, and we find a broad jet with a transverse radius of â‰250 r g at only 350 r g from the core. This implies that either the bright outer jet layer goes through a very rapid lateral expansion on scales â‰102 r g or it is launched from the accretion disk.
Original language | English |
---|---|
Pages (from-to) | 472-477 |
Number of pages | 6 |
Journal | Nature Astronomy |
Volume | 2 |
Issue number | 6 |
DOIs | |
State | Published - 1 Jun 2018 |
Bibliographical note
Publisher Copyright:© 2018 The Author(s).